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I. INTRODUCTION
The availability of large transport alrcraft has allowed the

transporting by air of many large, fragile aerospace payloads. Some of

A these payloads, such as horizontally mounted launch vehicles and spacecraft

t with flexible appendages, are very seusitive to low levels of vibration at
frequencies below five hertz. In order to protect these pavloads during
air transportation, it is necessary to znow the low-frequency vibration
environment of thesge ailrcraft cargo decks.

The measurement of cargo deck vibration envircnments has a long history

(references 1, 2), but most of these studies have dealt with the frequency
range above five or ten hertz. This lack of data below five hertz confronted
the Air Force Space and Missile Systems Organization (SAMSO) when it required

payloads with known high responses to 0.5 to ? Hz excitation to be transported

aboard C-~3A aircraft. The Air Force Flight Dvnamics Laboratory was requested

by SAMSO to perform the flight tests necessarv to define the low-frequency

vibration environment of the C-5A cargo deck. These measurements were needed
to determine the risks of occurrence of given levels of acceleration during
all phases of C-5A operations. The tests were performed and the envircnmental

vibrations were presented in a limited-distributicn report (3).

1. Magrath, H.A., Rogers, 0.R., and Grimes, C.K.. Shock and Vibration :
Handbook (C.M. Harris and C.E. Crele, Fds.), Vel. 3, Chap 47, McGraw- :
Hill, New York, 1961.

2. Ostrem, F.E., "A Survey of the Transportation Shock and Vibration Input
to Cargo,'" Shock and Vibration Bulletin No, 42, Part 1, pp. 137-151,
January 1972,

3, Pearson, Jerome, Thaller, Roger E., and Bayer, Anthony R. Jr., C-5A Cargo :
Deck Flight Vibration Measurements, AFFDL/FYS/73-12, Wright-Patterson AFB,

Ohio, November 1973.
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The objective of this report is to present these new low-frequency
measurements aad additional data in conjunction with statistical criteria.
The environmental vibrations are presented for the test conditions of
taxi, takeoff, climb, cruise, turbulence simulated by iterrain-following,
descent, and landing. These data and the :tatistical criteria can be
used to approximate the probability of occurrence of given levels of
acceleraticn for flight profiles constructed from these flight conditions.

The calculations in this report used only the vibration data weasured
by the Flight Dynamics Laboratory. Other vibration data on the C-5A have

been compiled, including fatigue studies of VGH data from many landings.

The results of these studies mav be found in reports such as reference 4.

4. Anon., C~5A Acceleration Data Reduction and Analysis Program Semi-Annual
Report. Lockheed-Georgia Company Report LG1US613/M-2-3, 31 May 1974.
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I1. FLIGHT TESTS AND RESULTS

The test results presented in this report were measured on C-5.. ajrcraft
number 68 during a series of test flights. This aircraft has been used as
a testbed for many new C-5A systems. It was equipped with an automatic
landing system called Autoland.

The C-5A cargo deck, shown in Figure 1, extends from fuseiage station
507 to station 1970 and is 19 feet wide. The station numbers are the
distance in inches from a reference point forward of the aircraft nose.

1. Instrumentation

In order to measure the vibration environment of equipment carried on
the cargo decx, accelerometers were mounted in pairs at the six locations
marked in Figure 1, All the 3.5-ounce accelerometers were mounted on
aluminum blocks attached to the permaznent cargo tie-down rails at the
sides of the cargo deck. The accelerometers at the forward end of the
cargo deck at station 530 sensed vertical and lateral acceleraticns. The
accelerometers near the middle of the cargo deck were located just forward
of the wheel wells at station 1150, and sensed vertical and longitudinal
accelerations. The accelerometers at the aft end of the cargo deck were
located at station 1940, just forward of the rear loading ramp. They were
positioned to sense vertical and lateral accelerations. The accelerometers
had an upper frequency limit of 1550 Hz, a sensitivity of 100 millivolts
(RMS) per g (peak), and an output noise of less than 5 mv RMS.

These twelve sensors were used to define the vertical, lateral, and
jongitudinal accelerations of the cargo deck. Roll, pitch, and yaw angular

acceleraticng were derived by taking the difference between the real-time

signals from pairs of scnsors., These anguler measurements give only a

w3l
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rough estimate of the angular vibration environment because of the large
distance between the sensors. For the low-frequency data, the accelerometer
outputs were filtered to pass frequencies between 0.15 and 30 Hertz. The
low frequencies were attenuated 6 dB per octave, down 3 dB at 0.15 Hz;

the high frequencies were attenuated at 48 dB per octave, down 3 dB at

30 Hz. For the full frequency range data, the 30 Hz low-pass filter was
removed and the accelerations were recorded at frequencies up to the
accelerometer frequency limit of about 1600 Hz.

The 12 channels of datae were amplified and recorded in flight by a
compact instrumen® package which contained the amplifiers, power supply,
time code generator, filters, and an FM tanc recorder; the system block
diagram is shown in Figure 2. The amplifiers were equipped with automatic
gain controls which adjusted the amplifier gains in 10 dB steps over a
70 dB range to ensure that the signals were recorded with the proper
mplitude, The automatic gain change was triggered when the signal was
out of the amplifier range for morc than 0.3 seconds. Most flight conditions
could thus be recorded properly without advance knowledge of the vibraticon
levels.  However, for the landing data the amplifiers were locked into a
pre-~calculated gain step in order to avoid clipping the response at the
instant of runway impact,

The fourteen-channel analog FM tape machine recorded at 3-3/4 ips with
a center frequency of 5.75 KHz., This gave 96 minutes of recording time
per flight with a signal-to-ncise ratio of 38 dB and a bandwidth of 1.25 Kilz.
Ti  landing data were recorded at 30 ips with a center frequency of 54 KHz.
This gave 12 minutes of recording time per flight with a signal-to-noise

ratio of 42 dB and a bandwidth of 16 KHz.
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2. Test Procedure

The complete instrument package was mounted on a 24-inch square
aluminum plate and tied down to the cargo deck by straps during the flight
tests, as shown in Figure 3, The tape recorder was operated in flight by
a crewman on the upper deck using a remote control unit. The crewman
recorded the test conditions by voice on an extra tape recorder channel.

Before each test flight, a known calibration signal was recorded.
Vibratjon was then measured with all aircraft engines and power off to
measure the instrumentation system noise levels,

Vibration was measured during takeoff, climb, cruise, turbulence
simulated by low-altitude terrain following, descent, landing, and taxi.
Measure.ants were made during 27 takeoffs and landings on three runways;
the gross weights ranged from 455,000 pounds to 673,000 pounds; and four

| hours of cruilsing time were recorded in conditions ranging from smooth air
to the severe vibration induced by terrain following at low altitude.

3. Data Analysis

The data were recorded on magnetic tapes during flight, played back

on a laboratory recorder meeting IRIG Standard #106-72, and were analyzed

by several methods. The first method was applied to 0-10KHz data obtained

during climb, cruise 1in smcoth air, and descent. To acquire a general
overview of the high frequency vibration, the root-mean-square acceleration,
g rms, was determined over one~third octave bands from 3.15 Hz to 10 KHz
center frequencies., The filters conformed to USASI 51.11-1966, Class 111
standards. More detailed analysis of the low-frequency data was performed

to determine rhe risk of encountering given levels of acceleration. This

.mmmMmmmmmmﬂMHM%ﬁMMﬁmﬂMMmﬂﬁmeWfMhﬂ
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determination required definition of the distribution of acceleration
amplitudes.

It was desired to determine the acccleration levels within the one-
third octave bands with center frequencies of 0.4 Hz to 31.5 Hz. Since
the filters from standard one—third octave analysis systems have centei
f.equencies only as low as 3.15 Hz, it was necessary to play back the
data through the filters at eight times the recording speed. The 0.4 Hz
band data were thus derived from the 3.15 [z band filter on the standard
one~third octave system, and so on up to the 31.5 Hz band data, which were
derived tfrom the 250 Hz band filters., Since the commercially available
cne~third octave systems are not pracisely spaced at the mathematically
correct frequencies, a negligible error in frequency was introduced by
this procedure.

This procedure was applied to low-~frequency data recorded during climb,
cruise in smooth air, and descent. The resulting filtered time histories
were averaged to obtaln root-mean-square acceleration, g rms, over one-
third octave bands with center frequencies from 0.4 Hz to 31.5 Hz. Because
these g rms levels were less than the levels obgerved during other conditions,
a comparatively small engineering risk was assoclated with underestimating
the distribution of these data. The Gaussian distribution was applied to
the low-level climb, cruise, and descent data, based upon previous data
analyses (5).

For the flight conditions causing the highest acceleratlons, a more

detailed analysis was used. The landing, taxiing, and terrain-following

5. Magnuson, C.F,, "Dynamic Environment Study of Turbojet Cargo Alrcraft,"
Proceedings of the Institute of Environmental Sclences 18th Annual
Technical Meeting, pp. 420-425, May 1972,
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records were filtered into one~third octave bands with center frequencies
of 0.4 Hz to 31.5 Hz.

These twenty filtered time histories were each sampled 124 times per
second and digitized by an analog-to-digital converter and recorded on a
second magnetic tape. The converter had an aperture time of 50 nanoseconds,
a full-scale input of +2.5 VDC, and a vesolution of 1.22 millivolts. These
digitized time histories were input to a computer with a 16-bit integer word
length. This computer used decimal words with a 23-bit masntissa and an
exponent biased by hexadecimal 80. Using a Fortran IV compiler, the time
histories were analyzed in terms of maximum accelerations and probability
densities over each frequency band. Figure 4 shows a flow chart of this
procedure,

In order to completely describe the distribution of accelerations, a
histogram of acceleration versus number of occurrences and its statistical
parameterg such as mean and variance would be needed for ecach frequency
band and for all sensors. Since this would require a prohibitive number of
graphs, a simplified method to describe the distributions was used which
required only one graph per sensor. In this method, the absolute values
of the time histories were used to produce the acceleration histograms. The
maximum value of acceleration for each frcquercy band was recorded, as were
the levels of acceleration which encompassed 68.27% and 95.45% of all the
data samples. These three values were then plotted by a digital plotter
for all frequency bands for each sensor. These particular percentage levels
were selected because they correspond to the values of ¢ and 20 for a Gaussian
distribution. Thus if the data were Gaussian, these two levels would be in

the ratio cf one tov two. When these percentage levels are plotted together
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with the maximum acceleration observed, it is possible to estimate with
some confidence whether a distribution is Gaussian by this test. If the
ratio is not one to two, the differenc: is a measure of how much the
distribution differs from the Gaussian case.

Tie plotted data represent the distribution ol accelerations during
a given flight condition, and the probability of occurrence of a given
acceleration can be estimated from the statistically significant ¢ and 20
levels.

Previous work has presented vibration data in percentage occurrence
levels, usually 99% or 90% levels (5,6). The advantage of using the peak,
95.457 and 68.27% levels is that they are more statistically convenient
than the 99% or Y0% levels. 'Tthe drawback to plotting the peak level is
that a stray digit in the computer can cause a great error in the maximum
value of acceleration. In the present program, the highest values of
acceleration were checked against the original time histories to ensure
their accuracy.

A sample of data plotted by this meituod is shown in Figure 5 tor a
Gaussian signal. The 68.277% and 95.45% curves are in the ratio of one
to two. The peak value curve is a function of the testing time in terms
of trequency -- that is, the number of cycles of data measured.
Theoretically, an infinitely long testing time will give an infinite peak

value and an exact cone-to-two ratio in the 68.277% and 95.45% curves,

5. Magnuson, C.F., "Dynamic Environment Study of Turbojet Cargo Aircraft,”

Proceedings of the Insgtitute of Environmental Sciences 18th Annual
Technical Meecting, pp. 420-425, May 1972.

6. Foley, J.1., Gens, M.B., and Magnuson, C.F.: '"Current Predictive Models

of the Dynamic Environment of Transportation.' Proceedings of the
Institute of the Environmental Sciences 18th Annual Technical Meeting,

May 1972, . 162-171.
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For practical testing times this ratio is still very close to 1:2, but

L

the peak acceleration curve usually falls above 3¢ (7). In addition, no
realizable physical system exhibits infinite values of acceleration; the
distribution 1is truncated at high levels of acceleration by physical ; g
limitations.
Within certain frequency bands, the display of landing data showed
the largest maximum values and the ratios of 68.277% and 95.457% levels
most differert from 2:1. The landing data were most important and
application of the Gaussian distribution to these data was least accurate.
Therefore, analysis of the landing Jlata was repeated using an alternate
method.
For each landing, a tabulation was made of the maximum acceleration
recorded in each of the selected frequency bands from impact to the end
of taxi. These peaks could then be used directly to compile the
probability of occurrence of specific values of acceleration using the
binomial distribution. This analysis is described in detail later.
4., Results
The test data showed that the highest acrcelarations at low frequencies
were experienced during landing. The other conditions producing high
accelerations were high-speed taxiing and terrain following. Accelerations
measured during these three conditions were analyzed in percentage
occurrence leveis. The results are summarized in Figure 6, which shows the

peak, 95.45%, and 68.27% levels recorded over 27 landings and a sample of

7. Gray, C.L., "First Occurrence Probabilities for Extreme Random
Vibration Amplitudes,” Shock and Vibration Bulletin No. 35, Part IV,
pp. 99-104, 1966,




low-altitude terrain following. The peak values from this figure were

converted to equlvalent double-amplitude based on sinusoidal vibration at

each band ceuter frequency and are plotted in Figure 7. The dashed line

in the figure is an envelope derived from previous data on smaller aircraft.
The low-frequency vibration enviromnment of the C-5A cargo deck is

less severe than that of smaller aircraft. 1In general, the data appear

to represent broad-band Gaussian excitation with enhanced responses at

predominant frequencies which correspond to the fuselage resonances.

Except for the landing data with the bands having center frequencies 8 liz,

10 Hz, and 12.5 Hz, the 95.457% level is about twice the 68.277 level,

indicating that the data do not differ greatly from Gaussian. Note that

due to the filtering of the data at 30 Hz, the 31.5 Hz band has been

attenuated slightly.

a. Taxiing

The responses for each sensor for taxiing are shown in Figures
8-19. The largest observed acceleration, 0.27g, was in the vertical
direction at the left front of the cargo deck in the 31.5 Hz band. There
were also significant accelerations in the 1-1.25 Hz and 8-30 Hz bands
at different parts of the cargo deck, The longitudinal accelerations were
the lowest observed, and were plotted on an expanded scale in Figures 13
and 15. The derived values of roll, pitch, and vaw angular accelerations
are shown in Figures 20-22. The roll angular acceleration wa: obtained by
subtracting the liucar accelerations from the two vertical sensors at
station 530 and dividing by the 228-inch distance between them; the pitch
angular acceleration was obtained in the same manner from the two vertical

sengors on the right side of the cargo deck at stations 530 and 1150; and
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the yaw angular acceleration was obtained from the twn longlitudinal
sensors at station 1150. The largest observed angular acceleration was
0.7 radians/second? of yaw in the 10 Hz band.
; . b. Climb, Cruise, Descent
The accelerations encountered in these flight conditions were
the lowest measured. As discussed previously, these data were considered
é; to be normally distributed and cnly the rms accelerations are plotted,
Figures 23-34 show the responses of each sensor for these three conditions
of climb, cruise, and descent., The first part of each figure, e.g.,

Figure 23a, shows the sensor response for the frequency range 0.4 to 31.5

Hz; the second part of each figure, e.g.,Figure 23b, shows the same sensor

I i i

response for the fraquency range 3.15 Hz fo 10 KHz., At the right side of

each figure is the overall rms respongse for the sensor. The accelerations

for each flight condition and sensor were relatively low; no singlc band

PP DU Ty

acceleration exceeded 0.1g ruws. Due to the recorder rolloff above 1,25 KHz, '

b i, 1l

the higher frequencies are attennated.,

c¢. Turbulence

o I o

It was hoped that a good sample of flight in turbulence would be

S L i

obtained, but only light turbulence was observed during this series of

? flight tests. However, during some test flights the aircraft was flown
at a height of 1000 feet above ground level with the aid of terrain-
following radar. This flight condition resu.ted in large accelerations

as the ajrcraft flew very rapidly through the near-surface turbulence.

A 3 ) This condition was intended to simulate flight through heavy turbulence i
at altitude and these data were used to estimate the aircraft responses

in this condition. Figures 35-49 show all the sensor responses and the ¥

11 -




derived roll, pitch and yaw accelerations during terraiu following. These

figures show generally lower responses than during taxiing, with the highest
responses occurring at lower frequencivs, Vertical responses in the 2 iz
band predominated at the forward station, and responses at 0.63 and 0.8 Hz
were larger at the center and aft stations. The highest lateral responses

were between 2.5 and 4 Hz and the highest longitudinal responses were at

"lMtuL‘:LM\\\\Mﬁ\iyﬂlﬁﬂumm&uMuiﬂﬂnfﬁ[[&ﬂ\@&%lfﬂim i

1 and 1.25 Hz. Note that Figures 40-42, 47, and 48 are plotted on an

expanded scale.

d. Landing

The responses for each sensor during landing are shown in

et et A il 1 il

Figures 50-61, and the derived roll, pitch, and yaw angular accelerations

N

during landing are shown in Figures 62-64. These figures show that the
vertical responses at the rear of the cargo deck represent the most severe
environment. The largest responses were in the 10 Hz band, and less
significant responses occurred in the 0.5, 3.15, and 20 Hz bands. The
largest linear acceleration observed in any one frequency band was 0.5g

in the 10 Hz band. The largest observed angular acceleration was roll in
the 10 Hz band.

The landing data show the largest discrepancies from the normal

distribution, which are particularly evident in the 8, 10, and 12.5 Hz

frequency bands. 1In order to apply an alternate method of analysis to

Mg

these data, the peak accelerations observed in each of these freguency
bands for each sensor are tabulated in Tables 1-12. One maximum is listed
for each sensor for each landing, but not all 27 landings were obtained

for the vertical sengors at the rear of the cargo deck.

12

o by o1 Vo] e "””““‘”M“““WWHWMW
" . . [

-




i

TS O 1R L

F

Pmmﬂw» i ‘”'“‘4‘ s ‘l\\“‘!"‘“,f"\“ﬂql'l”““"“‘F""

T11, SAMPLE VIBRATION CALCULATIONS

In order to determine the risk of encountering an acceleration which
would damage a sensitive payload, it 1is necessary to calculate the
probability of exceeding the limiting acceleration for each flight
condivion and then to combine thes. into an overall probability for an
entire flight profile. The profile is constructed from the time spent in
each of the conditions of interest - taxi, cruise, cvuise in turbulence,
descent, landing impact, and rollout. These probabilities have been
calculated by two different methods -- one based on the normal distribution
and one based on the binomial distribution. Most of the C-5A flight
vibration was distributed norm=1l'y, as indicated by the 68.277% and 95.457%
levels. llowever, for the landing and rolleout data in the frequency bands
centered on 8, 10, and 12.5 Hz, the binomial distribution was applied.
These methods are described below and are accompanied by sample calculations.

1. Normal Distribution

In order to determine the probability of exceeding a given acceleration
during a selected flight condition, first compare this acceleration to the
measured 100% level or the 30 level. If this acceleration is less than
either of these values, it will be exceeded frequently during this flight
condition. Tf the acceleration of interest is greater than these values,
the following . .alysis applies.

For normally distributed data, the probability P of exceeding an

acceleration a, where a is greater than three standard deviations (a>33),

) 2

is given by -a
Py 4
20

P < 2fTe (1)
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where £ is the frequency of tue vibration and T is the time in seconls
spent in the flight coundition (7). 1If Py through Pg are the values of
P for flight couditions 1 through 5, then the overall probability of

exceeding acceleration a during the total flight profile is
P =1 - [(1-P) (1-P5) (1=P3) (1=P},) (1-Pg) ] (2)

Table 13 has been compiled as an example of the application ot tue
normal distribution teo find the probability of exceeding a vectvical
acceleration ot 0.1g in the 1.25 Hz frequency band at the right rear of the
C-5A cargo deck. The flight profile assumed includes 500 scconds of taxiing,
1500 seconds in cliwb, and so on through ail the values given in column ©
of Table 13, for a flight oif about Iour hours. The 1007% and 68.27% (or ¢)
values were obtained from Figure 16 for taxiing, from Figure 31 and for
climb, cruise, and descent, from Figure 43 for turbulence (simulated by
terrain following), and from VYigure 58 for landing. T!.. values required
for the calculations are shown in columns 2-6. Column 7 shows the risk
of exceeding the 0.lg acceleratiocn for each flight condition, and the sum
jn column 9 then shows the overall probability of exceeding 0.lg acceleration
in the 1.25 Hz freguency band for this flight profile, wnichk is 0.418. The

rms acceleraticn during climb, cruise, and descent is so low that the

probability of exceeding 0.lg in these conditions is essentially zero. The

P VTS N, SAT Y

proportion of time spent in turbulence may be estimated as a function of

L

st oAl il e B i

altitude, tollowing Press and Steiner (8).

7. Gray, C.L., "First Occurrence Probabilities for Extreme Random Vibration
Amplitudes,' Shock and Vibration Bulletin No. 35, Part IV, pp. 99-104,

1966.
8. Press, Harry, and Steiner, Roy, An Approach to the Problem of Estimating

Severe and Repcated Gust Loads for Missiie Operations, NACA TN4332, 1958,
14
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Additional information on the application of equati »m 1 may be found E

in Bendat (9) and Bendat et al. (10). - 3

ol o

2. Binomial Distribution

The data measured in the 8, 10, and 12.5 Hz bands Juring landing do not
= show a ratio of 1:2 between the 68.27% and 953.45% levels and are apparently
not normally distributed. In order to provide a better measure of the
probability of occurrence of large accelerations during this conditicn, the
'% binomial distribution may be applied. The probability P of exceeding

acceleration "a" during at least one landing included in the flight is

given by
- 1 - n
P=1-() (3)
where Pa is the proportion of all landings in which the acceleration a was
not exceeded and n is the number cf landings planned for the flight. The

values of Pa may be determined from a compilation of the peak accelerations

b oo

recorded during the test landings. These are showm in Tables 1 through 12

Mﬁwﬁm

; for each of the twelve sensors. The peak acceleration for each landing is

[
™

tabulated for the three frequency bands centered on 8, 10, and 12.5 Hz.

A

The proportion Pa of the landings during which an acceleration a was not

exceeded may thus be determined directly from the tables. When the

probability P from equation 3 is determined, it may be combincd with the

Bl e L el il

probabilities determined for other flight conditions by equation 2. This

overall probability can therefore be a combination of binomially and

9. Bendat, Julius S., Probability Functions for Random Respcnses:
Prediction of Peaks, Fatigue Damage, and Catastrophic Failures,
NASA CR-234, National Aeronautics and Space Administration, Washington,
D.C., April 1964.

I lfyfm"w TR L R oA

10. Bendat, J.S., Enochson, L.D., Klein, G.H., and Pierson, A.G., The
Application of Statistics to the Flight Vehicle Vibration Problen,
ASD TR 61-123, Wright-Patterson AFB, Ohio, Decemher 1961.
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normally derived probabilities.

Table 14 has been compiled as an example of the use of the binomial

[T
b

distribution for calculating the probatility of exceeding 0.3g vertically

at the right rear of the cargo deck in the 10 Hz frequency band. A flight

g e

profile of 920 seconds taxiing, 5000 seconds climb, and so forth, was used

as shovn in column 6, including one landing. The probabilities for taxi,

- e e

climb, crulse, turbulence, and descent are calculated as before, but the
. binomial distribution is used for the landing. From Table 9, there were

3 landings during which 0.3g was exceeded in the 10 Hz band. The

probability of exceeding 0.3g during a single landing is thus
=1 - nooy -7y - i
P=1 (Pa) 1 -G 0.15 i

: In this example, the overall probability of exceeding 0.3g is strongly

dependent on the landing impact, and the overall probabi ity is also 0.15.

A M g

A g
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IV. CONCLUSIONS

[T+ T IR

The low-frequency vibration environment of the C-5A cargo deck is

not severe compared to smaller transport alrcraft. The most severe

- vibration is the response of the aft end of the cargo deck due to the
landing impact. A recommended sinusoidal vibration envelope has been
developed as shown in Figure 7, to be compatible with the test methods
of MIL STD 810B. For fragile payloads which cannot meet these requirements
the results may be used in designing isolation mounts for the required
attenuation over the frequency range of 0.4 to 30 Hz. The statistical
methods described may also be used to determine the probability of
exceeding a critical acceleration level at a particular frequency, in
order to quantify the risk o. damaging very expensive cargo. These data
provide an estimate of the C-5A vibration environment, with a degree of

confidence based on the sample size used. To increase the confidence

-

that this accurately represents the actual environment, however, would ) 43
require a much larger sample of data and a statistical correlation with
the specific environmental parameters such as gust velccity, landing

sink speeds, and cargo loading.
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Figure 2. Block Diagran of Instrumentation System.
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Lateral Taxling Acceleration, Right Front Cargo Deck,
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Figure 12. Vertical Taxiing Acceleration, Right Center Cargo Deck.
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Figure 1l4. Vertical Taxling Acceleration, Left Center Cargo Deck.
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INSTANTANECUS ACCELERATION, g's
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Figure 17. Latezal Taxiing Acceleration, Right Rear Cargo Deck.
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Figure 19.
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INSTANTANEOUS ANGULAR ACCELERATION, rad/sec?
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Figure 20. Roll Angular Acceleration During Taxiing.
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INSTANTANEOUS ANGULAR ACCELERATION, rad/sec
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Figure 22, Yaw Angular Acceleration During Taxiing.
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Figure 50. Vertical Landing Acceleration, Right Front Cargo Deck.
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Figure 52. Vertical Landing Acceleration, Left Front Cargo Deck.
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Figure 53- lateral Landing Acceleration, Left Front Cargo Deck.
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Figure 97. Longitudinal Landing Acceleration, Right Center Cargo Deck.
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Figure 57. Longlitudinal Landing Acceleration, Left Center Cargo Deck.
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Figure 63, Pitch Angular Acceleration During Landing.
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Figure 64, Yaw Angular Acceleration During Landing.
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Table 1. PEAK VERTICAL LANDING ACCELERATIONS,
RIGHT FRONT CARGO DECK

Maxlmum Instantaneous Acceleration, (g)

Landing Number 8 Hz Band 10 Hz_ Band 12.5 Hz Band
1 0.043 0.038 0.051
2 .032 .038 .048
3 .051 .078 .067
4 .030 .032 .054
5 .089 .097 .089
6 .070 .118 .124
7 013 .226 .092
8 .094 .094 .057
9 .097 121 . 094

10 .078 .070 .097
il .083 .070 .089
12 .043 073 .089
13 .054 .070 .075
14 .059 .043 . 067
15 .065 .062 . 083
16 .051 .059 .065
17 .073 .083 .118
18 .083 .081 .065
19 .038 .046 .089
20 .065 .075 .075
21 .132 .116 .073
22 .073 .129 . 067
23 .062 .057 .078
24 043 .046 .038
25 .113 .132 .067
26 .057 .059 .059
27 .057 .067 .059
95




bt o Bl ik o

Table

Landing Number

w ro

w B

3.

LEFT FRONT CARGO DECK

PEAK VERTL1CAL LANDING ACCELERATIONS,

Maximum Instantaneous Acceleration, (g)

8 Hz Band 10 Hz Band 12.5 Hz Band

0.045 0.048 9.053
053 045 .048
.034 074 064
.029 .029 045
. 069 .082 .103
.077 .15h 135
119 .233 .074
101 . 095 125
. 066 111 .066
.061 .053 074
.109 127 106
. 098 .106 .090
. 085 .045 077
042 .058 .050
.077 064 .04
117 . 098 . 069
058 .053 114
093 .090 098
034 . 045 114
056 .056 066
082 .109 069
032 .090 045
058 046 058
040 .45 050
095 .101 074
045 .042 095
95 .066 111




7 Table 4. PEAK LATERAL LANDING ACCLELERATIONS,
R LEFT FRONT CARGO DECK

Maximum Instantaneous Acceleration, (g)

Landing Number 8 Hz Band 10 Hz Band 12,5 Hz Band
o 1 0.028 0.027 0.034
' 2 . 027 .052 .041
3 .025 034 .035
4 .018 .022 .025
5 .059 .064 .034
6 . 066 .152 .077
7 124 121 .045
8 . 084 .107 .036
9 .088 .108 .038
10 . 044 .063 047
11 036 .054 .023
12 . 060 .083 .030
13 .036 .045 .027
14 .033 .035 .032
15 .036 050 .029
N 16 .055 086 025
17 L0463 .063 .047
: 18 .056 .109 .039
i 19 .018 .043 ,027
' 20 .038 071 .038
21 .056 .103 .028
22 .Ch9 .084 .035
23 .027 .042 .026
24 .023 .025 .U18
25 . 049 .069 . 044
26 .046 .057 .023
27 .036 .053 .030

L L L




Table 3, PEAK VEKTICAL LANDING ACCELERATIONS,

RIGHT CENTLR CAKGO DECY

Haximum [ustantaeneous Acceleration, (g)

Land ing Numbai

8 Hz Band

1u He Band

] 0,034
2 063
) L0y
4 dUIB
b] L0748
i 10!

«10)
H JUl0
9 KA
10 O
1 100
14 101
13 A
14 0306
19 09}
16 Jd11
17 067
14 J0n)
19 028
20 L0062
2l 2047
22 034
21 , O
2h RURL
F)) » 101
2‘) o‘IIZ'J
27 049}

.036
, 019
, B0
6
067

ll('b
J02Y
W0y

114
SO0
1032
UG
004‘#

09}
094
JOnd
047
c()',l-/

11
AUl
039
1048
[ IIIU

. ?
"lflt

N

0.0‘3’1
028
037
034
039

000
P
03]
8
O3

0‘42'2
039
031
03}
0131

U4
034
D44
(134
031

04
JU8)
030
onlC
N4

36
U014

h\

R R




Table 6, PEAK LONGITUDINAL LANDING ACCELERATIONS, :
RIGHT CENTER CARGO DECK ' %

Maximum Instantaneous Acceleration, (g)

l.anding Number 8 Hz Band 10 _Hz_ Band 12.5 Hz Band

1 0.021 0.012 0.012
2 .017 017 .021
k) 012 .012 . 015
4 .010 ., 008 .009
5 .04? . 049 024
6 060 .0b2 .038
7 052 .065 .021
8 056 .038 .022
9 N26 .025 .021
10 022 .038 .021
11 063 .091 045
12 045 051 023
13 027 .042 .02
14 023 .029 016
15 046 057 .029
4 037 100 062
044 .061 016

18 L0640 054 .035
19 .022 030 .020
20 C33 024 .020
21 056 .069 .036
22 040 124 .117
23 031 053 019
24 N16 023 .016
2) 070 119 049
26 018 .029 013
27 041 048 017

100




TR T T . T T YA AT s

Landing Number

(W0 S FUR SN

PEAK VERTICAL LANDING ACCELERATIONS,

LEFT CENTER CARGO DECK

Maximum Instantaneous Acceleration, (g)
8 Hz Band 10 Hz Band 12.5 Hz Band

0.043 0.049 0.046
.055 .043 .052
.046 .072 .046
.043 .032 .034
L1122 .095 .037
.072 .086 .055
.057 .057 .032
.060 .072 .040
.037 .052 .026
049 .043 .034
.083 .106 .034
.037 .037 .032
.055 069 .037
.060 .040 .037
.049 .052 L0490
.063 .086 . 040
.069 .063 .040
.063 .057 .037
.043 .046 .060
.063 .066 .055
.129 .129 L0490
.072 155 .135
049 .055 .040
.029 .043 .029
101 .172 .089
046 . 049 .029
.040 .063 .032




Landing Number

PEAK LONGITUDINAL LANDING ACCELERATIONS,
LEFT CENTER CARGO DECK

Maximum Instantaneous Acceleration, (g)

1
2
3
4
5

8 Hz Band 10 Hz Band 12.5 Hz Band
0.025 0.023
.019 .014
.030 .063
017 .010
.064 .063
.057 .076
.050 .054
.062 .048
.033 .027
.034 .050
.066 .090
L041 .03¢4
047 .054
.024 .022
.039 .050
.039 .108
.054 .068
042 044
.025 .037
.029 .030
L0646 084
.078 .132
.041 .058
.019 .025
.063 .133
.026 .038
.034 034




8 Hz Band 10 Hz Band

Landing Number

PEAK VERTICAL LANDING ACCELERATIONS,
RIGHT REAR CARGO DECK

Maximum Instantaneous Acceleration, (g)

12.5 Hz Band

1
2
3
4
5

0.125

<163
.151
.083
.101

.192
.101
.104
.083
.156

.169
.086
.125
065

.151
<109
.075
.080

.101
.091
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e el

il b
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Table 10.

PEAK LATERAL LANDING ACCELERATIOXNS,
RIGHT REAR CARGO DECK

Maximum Instantaneous Acceleration, (g)

Landing Number 8 Hz Band 10 Hz Band 12.5 Hz Band

; 1 0.050 0.035 0,043
’ 2 .057 .039 .052
3 .115 .091 .070

4 .030 .025 .020

5 .164 .114 . 048

6 .136 .213 .108

i 7 .210 .131 . 049
: 8 144 .162 .046
‘ 9 .099 .063 .041
10 <112 .092 .054

11 .102 .103 .060

12 .208 .137 .058

13 .142 .102 .027

14 .097 .058 .026

15 .076 .089 .052

16 .181 . 148 .055

17 .100 .068 .042

18 .143 .173 .041

19 .033 .050 .052

20 .085 .089 . 047

21 .189 .194 .060

22 .154 .168 .137

23 .073 .067 046

24 .050 . 045 . 037

25 . 149 .105 .051

26 .064 .085 .035

27 .130 .088 .035

104
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77 ' * Table 11. PEAK VERTICAL LANDING ACCELERATIONS,
LEFT REAR CARGD DECK

Maximum Instantaneous Acceleration, (g)

Landing Number 8 Hz Band 10 Hz Band 12.5 Hz Band
1 0.041 0.077 0.084 E
. 2 .053 . 096 .132
3 .031 .067 .098
4 .041 . 048 .053
5 141 .220 .072
} 6 124 .218 .95 5
: 7 .122 .206 .074 '
8 .168 .218 .079
9 091 .115 .093 i
: 10 .077 .129 .084 ‘
: 1 .079 .175 . 060
12 .062 .14l .079
13 134 .153 .093
14 .060 .053 .079

;
4
b
2
3
E,
]
é
g
é
i




Table 12.

Landing Number

v

O e 00~

12
13
14
15

16
17
18
19
20

21
22
23
24
25

26
27

LEFT FRONT CARGO DECK

PEAK LATERAL LANDING ACCELERATIONS,

Maximum Instantaneous Acceleration, (g)

8 Hz Band 10 Hz Band 12.5 Hz Band
0.050 0.038 0.045
.063 .036 .054
.030 .031 .061
.031 .027 .021
.175 .116 .053
. 144 .226 .119
,227 .139 .061
L146 .176 .048
.1.07 . 009 044
.126 .094 .056
114 .112 .068
,223 .151 .059
.137 112 .033
.104 .063 .026
.078 .093 . 060
.185 .158 .060
112 .069 .044
147 .183 .040
.038 .054 .055
.108 .092 .056
.206 .200 .064
162 .162 .136
073 . 066 044
.050 . 048 .037
.161 .115 .051
072 . 089 .039
L1642 .092 .030
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